

FM Tee and Manifold Combiner Designs

Nick Paulin V.P. RF Engineering

Bandpass filter Agenda

- Why bandpass?
- The basics
- The construction
- The types
- The challenges
- The combiner design
- The system considerations

Why bandpass?

- Bandpass filters provide separation from other frequencies / stations / broadcasters / etc.
- FCC Regulation Compliance –
 Intermodulation Products
- Used in multiple station combining

Bandpass filter Agenda

- Why bandpass?
- The basics
- The construction
- The types
- The challenges
- The combiner design
- The system considerations

- Narrowband
- High Q (Quality Factor)
 - Selectivity
 - Insertion loss
 - Bandwidth
- 2, 3 or 4 Pole designs are common for FM applications

- Composed of 'tanks'
 - Resonator
 - Loops
- Each 'tank' adds 1 pole
- Each pole can be seen in the return loss response

- The top of the chart represents perfect efficiency
- Logarithmic scale
 - Every 10 dB increase the loss 10x
- $\eta = 10^{\frac{10}{10}} * 100\%$

dB

Used for closely spaced applications

3x to 10x the operating frequency has no

guarantee

Bandpass filter Agenda

- Why bandpass?
- The basics
- The construction
- The types
- The challenges
- The combiner design
- The system considerations

The construction

- ERI filters are loop coupled and the loop is fixed with two bolted connections. No insulating material used in the coupling.
 - Loop coupling works very well for modular cavities
- Other types of coupling you may see...
 - Space coupled
 - Capacitive coupled
 - Direct tap coupled

The construction

- Control rod
 - Invar Iron/Nickel Alloy
 - Very low CLTE
 - Adds thermal stability
- ERI Filters use bellows to handle expansion and contraction
- Other filters may use a sliding contact using finger stock with Invar

Bandpass filter Agenda

- Why bandpass?
- The basics
- The construction
- The types
- The challenges
- The combiner design
- The system considerations

The types

- Channel combining Reflective filters
 - Tee combiner
 - Branch combiner
 - Star-point combiner
 - Manifold Combiner
 - Advantages: Lower cost
 - Disadvantages: Expansion requires additional engineering
- Constant Impedance Combining
 - Uses 2 reflective filters with 2 hybrids
 - Advantages: Future expansion is very easy using the Wideband port
 - Disadvantages: Cost, physical space

Constant Impedance Combiner

- Two filters in parallel operation
- Split the power 50/50
- Two hybrids to split/combine power

Constant Impedance Combiner

- Directionality
 - The power flows in one direction
 - Not dependent on critical line section lengths
 - Improves port-to-port isolation
- High power handling compared to a single filter
- Resistive loads absorb out of band energy

Vertically Racked Constant Impedance

 Modular design allows for unique and hard to access locations

Floor Racked Constant Impedance

Tee Combiners

- Two filter share a common point
- Line lengths are critically important
- Simple construction compared to constant impedance

Wall Mounted Tee Combiner

Racked Tee Combiner

Manifold Combiner

- All the filters plug into a manifold
- All the line sections are critical
- 1 Tee and 1 Filter for each frequency added

Manifold Combiner

Floor Mount Mixed type

Bandpass filter Agenda

- Why bandpass?
- The basics
- The construction
- The types
- The challenges
- The combiner design
- The system considerations

The challenges

Voltage

$$-V_{pk} = \sqrt{2 * P * Z_o}$$

	FM w/ VSWR derating				
	Average Power	Peak Power		Peak Voltage	
7/8"	3.8	41	kW	2,025	V
1 5/8"	13.4	130	kW	3,606	V
3 1/8"	47	441	kW	6,641	V
4 1/16"	77	711	kW	8,432	V
6 1/8"	167	1,538	kW	12,402	V
9"	354	3,300	kW	18,166	V

Example

5 Stations: Each at 5 kW each with -10 dBc HD

$$-V_{pk-analog} = \sqrt{5000 * 50 * 2} = 707 V_{pk}$$

Digital power: 500 W

-
$$V_{pk-digital} = \sqrt{500 * 50 * 2 * 4} = 447 V_{pk}$$

Power Total: 5500 W

- Voltage Total: 1154 V_{pk}

	FM w/ VSWR derating				
	Average Power	Peak Power		Peak Voltage	
7/8"	3.8	41	kW	2,025	V
<mark>1 5/8"</mark>	<mark>13.4</mark>	130	<mark>kW</mark>	3,606	V
3 1/8"	47	441	kW	6,641	V
4 1/16"	77	711	kW	8,432	V
6 1/8"	167	1,538	kW	12,402	V
9"	354	3,300	kW	18,166	V

Example, cont.

Total output:

Power: 27.5 kW

- Voltage : 5,770 V_{pk}

Output line size: 3 1/8"

Filter choices

	FM w/ VSWR derating				
	Average Power	Peak Power		Peak Voltage	
7/8"	3.8	41	kW	2,025	V
1 5/8"	13.4	130	kW	3,606	V
<mark>3 1/8"</mark>	<mark>47</mark>	441	<mark>kW</mark>	6,641	V
4 1/16"	77	711	kW	8,432	V
6 1/8"	167	1,538	kW	12,402	V
9"	354	3,300	kW	18,166	V

ERI Filters	Port Size
940	1 5/8"
780	1 5/8"
780	3 1/8"
783	3 1/8"
783	6 1/8"

Bandpass filter Agenda

- Why bandpass?
- The basics
- The construction
- The types
- The challenges
- The combiner design
- The system considerations

The combiner design Lumped Element Circuit Model

Limitations of the Circuit analysis

Pros

- Evaluate for practicality
- Reasonable performance data for return loss, port to port isolation, and group delay variation
- Creates a good starting point for a final design

Cons

- Lumped elements are ideal
- Real world have additional physical length that needs to be accounted for

Using a Quick Designer

Tee / Manifold Combiners

- Use physical transmission line to combine two filters
- Input loop designs (short circuit at filter input) are different across filter styles and manufacturers
- The ideal circuit needs to be conditioned differently for each style filter to simulate accurately

Verify the manifold network

- Can use a 3D FEM analysis tool
 - Visualize the layout
 - Provides more insight into actual performance

Bandpass filter Agenda

- Why bandpass?
- The basics
- The construction
- The types
- The challenges
- The combiner design
- The system considerations

The system considerations

- When to choose manifold over constant impedance?
 - When space is a premium
 - Transmitters use tubes? Count on a phasing loop.
 - The output line size and filter size align appropriately

Co-located Arrays

- System A and System B are two unique operations
- Arrays typically have 10 ft or more physical separation
- Changes in System A have no affect on System B

Dual Input Panels with a Manifold

- Direct coupling path from Combiner A to Combiner B
- Changes within the panel affect both combiners A and B
- More susceptible to isolation changes due to weather events
- Unwanted energy will reradiate in the opposite polarization
- YMMV

Dual Input Panels with Constant Impedance

- Unwanted energy will be absorbed in a reject load
- Consistent performance across weather conditions
- Antenna isolation becomes less of a factor for intermodulation products or self induced interference

Summary

Туре	Pros	Cons
Tee / Manifold	Lower cost	All placed in one location
	Smaller foot print	Not easy to rearrange after designed
		Not as easy to expand later
		Harder to rack
		Short circuits reflect unwanted energy in dual input systems
Constant Impedance	Absorbs unwanted RF into loads	Higher cost
	Can be place in different rooms	More floor space
	Easy to rack	
	Better synergy with dual input systems	

System	Combiner Type
Single Input	Manifold or Constant Impedance
Dual Input	Constant Impedance
Co-Located	Manifold or Constant Impedance

Questions

