Tower Deflection Impact on Station Service

2025 WBA Broadcasters Clinic Karl D. Lahm, P.E.

Tower Deflection Basics

- Winds deflect towers
- Tower deflection causes antenna tilt
- Antenna tilt causes service losses & some gains
- Towers not plumb have greater deflection

Presentation Overview

- Causes of Tower Deflection
- Deflection With Expected Wind
- Deflection Service Population Impact Study
 - 14 upper Midwest markets from Detroit to Des Moines
 - Service populations calculated for 39 scenarios per market
 - Data distilled into average service losses per market and deflection magnitude
- Theoretical Basis of Deflection Losses

Tower Deflection Causes

Wind Loading

- All wind forces cause some deflection of the tower
- Towers are designed to withstand specified wind conditions
- Gusts can cause dynamic variation of deflection

Ice Formation

- Asymmetrical icing can cause static deflection
- Icing increases wind loading and therefore deflection
- Towers designed to withstand specified icing conditions

Improper Guy Wire Tension

- Causes constant deflection of tower
- Can contribute to structural damage and/or failure

How Much Deflection is Normal?

- Some deflection is unavoidable.
- Deflection is a function of tower structural design.
- Theoretical deflection for assumed worst-case conditions (including icing) is frequently found in tower structural analysis reports.
- Graph of deflection (tilt) versus elevation is provided.

Horiz. Disp. Diagram Max. Envelope (All Loading Cases)

1200' Tower Deflection

Straight tower

Displacement in Inches Shown Angle = tan⁻¹ (defl/height) = 0.42°

1510' Tower Deflection

tnxTower analysis details

Straight tower, multiple antennas

Tilt can be read directly from center plot

Maximum deflection 0.3°

2000' Tower Deflection

tnxTower analysis details

Candelabra tower

Tilt can be read directly from center plot.

Maximum deflection 0.7°

Physical Deflection Takeaways

Towers are designed to minimize deflection

 Structural standards used in design & analysis include significant wind and ice loading assumptions

• Theoretical deflections of ½° are typical

Impact of Tower Deflection

- Wind, Icing, or Mis-Tensioning Deflects Tower
- Antenna is Physically (Mechanically) Tilted
- Elevation Radiation Pattern is Tilted
- Signal Strength Varies from Normal Near Surface
 - Increased in some locations, decreased in others

Typical Elevation Radiation Patterns

Depression Angle in Degrees

Depression Angle Distances

Deflection Impact Overview

Pattern & Elevation Observations

- Narrower elevation beams are more sensitive to deflection: UHF more susceptible than HVHF
- Greater antenna elevation causes more sensitivity to deflection
- No impact in directions orthogonal to the direction of deflection, symmetrical opposite tilt inline

Service Population Impact Study

- 14 Upper Midwestern Markets
- "Typical" Station Defined for Each Market
- 3 Deflection Scenarios in 4 Directions per Market
- 3 Receiving Scenarios
- 39 Total Scenarios per Market
- FCC's TVStudy Software Used

Service Population Study Markets

- 14 Upper Midwest Markets
 - Detroit to Des Moines, Peoria to Duluth
- Some markets intentionally omitted
 - Buildings, not towers, used at Chicago
 - Substantial site diversity precludes "average" station derivation:
 - Grand Rapids, Lansing
 - Traverse City-Cadillac, Marquette
 - Eau Claire, Wausau etc.
 - Insufficient stations for averaging
 - Rockford

"Typical" Station for Each Market

- Averaged UHF and VHF Channel
 - Used regardless of whether it is occupied in the market
- Hypothetical Transmitter Site
 - Located at centroid of actual station sites
 - "Outlier" sites not included in average
- Averaged radiation center elevation
 - Average based on both UHF and VHF stations (except Duluth)
- Averaged Effective Radiated Power
 - Separate averages for UHF and VHF
- Averaged Antenna Slot/Bay Count & Electrical Tilt
 - Antenna manufacturer & elevation pattern based on "market consensus"
- Omnidirectional Operation Assumed

VHF and UHF Stations Studied

- "Typical" UHF Station in All Markets
 - Most markets have no more than one VHF station
 - VHF ignored in these markets deflection not critical in VHF
- "Typical" VHF Stations in Des Moines and Duluth
 - 3 VHF stations in Des Moines market
 - 2 VHF stations in Duluth market

"Typical" Station Data

<u>Market</u>	<u>Channel</u>	Latitude		Longitude		ERP	RCAMSL	<u>Slots</u>	Tilt	HAAT		
		(°)	(')	(")	(°)	(')	(")	(kW)	(m)		(°)	(ft)
Cedar Rapids	28	42	17	21	91	53	56	663	821.8	31	1	1788
Des Moines (UHF)	26	41	49	2	93	36	60	671	891.5	28	1	1965
Detroit	27	42	27	46	83	13	1	483	522.3	22	0.75	1016
Duluth (UHF)	24	46	47	22	92	7	8	451	588.4	12	0.75	971
Flint-Saginaw-BayCity	25	43	13	20	83	55	35	546	530.4	22	0.75	1093
Green Bay	23	44	22	39	88	6	50	714	594.5	26	0.75	1170
La Crosse	25	43	48	19	91	22	9	550	599.1	22	0.75	1081
Madison	21	43	3	18	89	31	37	354	749.0	26	1	1475
Milwaukee	30	43	5	54	87	54	33	967	525.7	27	1	1063
Minneapolis-St.Paul	30	45	3	38	93	7	57	847	709.4	30	1	1416
Quad Cities	27	41	23	26	90	24	43	933	567.7	28	1	1144
Peoria	28	40	37	50	89	33	4	479	396.9	30	0.75	652
Rochester	26	43	38	34	92	31	36	349	699.9	21	1	1076
South Bend	31	41	36	34	86	11	45	329	565.5	30	0.62	0
Des Moines (VHF)	11	41	49	2	93	36	60	34.5	891.5	17	0.5	1965
Duluth (VHF)	9	46	47	22	92	7	8	39.5	608.4	12	1	990

What is TVSTUDY

- FCC's multipurpose TV service analysis software
- Based on FCC/OET Bulletin 69 DTV analysis procedures
- Uses NTIA Integrated Terrain propagation model (a/k/a Longley-Rice)
- Nearly all analysis parameters can be configured, facilitating many tasks other than TV interference

13 Hypothetical Deflection Scenarios

- No Deflection, Minimal Wind
- ½° Deflection Normal Variations
 - North, East, South, West
- 1° Deflection Wind/Ice Near Design Limit
 - North, East, South, West
- 1½° Deflection Tower Not Plumb, Windy
 - North, East, South, West

3 Receiving Scenarios per Market

TVStudy Parameter	Rural	Suburban	Urban	
Receiving Height	33 ft (10 m)	13 ft (4 m)	6½ ft (2 m)	
Minimum Signal Strength	48(UHF), 46(VHF) dBμ	60(UHF), 56(VHF) dBμ	80(UHF), 68(VHF) dBμ	
Location Variability	50%	90%	90%	
Time Variability	90%	90%	90%	
Situational Variability	50%	90%	90%	

Minimum Signal Strength Based On:

Receiver antenna gain, antenna/coax mismatch, coax loss, building penetration loss Noise components & multipath effects

Deficiencies in FCC's 41 dBμ (UHF) and 36 dBμ (VHF) Thresholds:

Multipath effects, building penetration loss, antenna/coax mismatch not included Antenna gain overly optimistic, coax loss based on 33' elevation

TVStudy Analysis Assumptions

- Interference Not Considered
- Terrain Blockage/Attenuation Considered
- Land Use & Land Cover Losses Not Considered
- 2010 Census Population Data
- 0.2 km Terrain Sampling Interval
- ½ km Study Cell Size

Impact Data Consolidation

Output Data:

- Service loss percentage calculated for 36 deflection scenarios
 - 3 deflections for each direction and receiving scenario
 - 3 receiving scenarios
 - 4 directions per receiving scenario
- 39 data points per market (78 if VHF included)

Data Processing:

- Average of 4 directions calculated for each receiving scenario and deflection
- 9 average loss percentages per UHF market, 18 for HVHF+UHF

Normal Deflection Analysis

Based on ½° to 1° antenna deflection

Correlates with worst-case structural analysis results

Assumes tower plumb throughout aperture absent wind

Summary Data − ½° & 1° Deflection

				½° Population Impact		1° Population Impact		pact	
<u>Market</u>	<u>ERP</u>	<u>HAAT</u>	Slots/Bays	<u>Urban</u>	<u>Suburban</u>	<u>Rural</u>	<u>Urban</u>	<u>Suburban</u>	<u>Rural</u>
Peoria	479	652	30	-0.2%	-0.6%	0.0%	-1.3%	-2.1%	-0.1%
Duluth UHF	451	990	21	-1.3%	-0.1%	-0.1%	-4.6%	-0.3%	-0.4%
Detroit	483	1016	22	-0.6%	-0.2%	-0.1%	-2.1%	-0.5%	-0.1%
South Bend	329	1058	30	-2.0%	-0.4%	-0.1%	-12.7%	-1.9%	-0.5%
Milwaukee	967	1063	27	-1.5%	-2.6%	-0.2%	-3.3%	-2.7%	-0.7%
Rochester	349	1076	21	-0.7%	-1.1%	-0.1%	-5.5%	-0.8%	-0.3%
La Crosse	550	1081	22	-0.2%	-0.1%	-0.2%	-0.5%	-0.5%	-0.6%
Flint-Saginaw Bay	546	1093	22	-0.7%	-0.2%	-0.2%	-3.6%	-0.8%	-0.6%
Quad Cities	933	1144	28	-0.3%	-1.0%	-0.3%	-2.0%	-4.4%	-1.7%
Green Bay	714	1170	26	0.7%	-0.3%	0.0%	-2.3%	-1.3%	-0.2%
Twin Cities	847	1416	30	-1.4%	-0.2%	-0.1%	-3.8%	-1.5%	-0.5%
Madison	354	1475	26	-0.2%	-0.4%	-0.2%	-2.9%	-1.3%	-0.8%
Cedar Rapids	663	1788	31	-2.7%	-0.2%	-0.2%	-12.6%	-1.3%	-1.2%
Des Moines UHF	671	1965	28	-1.1%	-0.2%	0.1%	-4.7%	-0.7%	-1.3%
Overall Average UHF Population Impact			-0.9%	-0.5%	-0.1%	-4.4%	-1.4%	-0.6%	
Duluth VHF	39.5	971	12	-0.3%	-0.1%	-0.1%	-0.8%	-0.2%	-0.4%
Des Moines VHF	34.5	1965	18	-0.1%	0.0%	0.0%	-0.9%	-0.1%	-0.1%
Overall Average HVHF Population Impact			-0.2%	-0.1%	-0.1%	-0.8%	-0.1%	-0.2%	

HAAT Correlation, UHF Rural

Rural Population Loss, Normal Deflection

HAAT Correlation, UHF Suburban

Suburban Population Loss, Normal Deflection

HAAT Correlation, UHF Urban

Urban Population Loss, Normal Deflection

Static Tilted Tower Scenario

- Tower out-of-plumb
- ½° to 1° static structural deflection
- ½° to 1° wind deflection
- 1½° total deflection

Summary Data – 1½° Deflection

<u>Market</u>	<u>ERP</u>	<u>HAAT</u>	Slots/Bays	<u>Urban</u>	<u>Suburban</u>	<u>Rural</u>
Peoria	483	1016	22	-5.6%	-1.1%	-0.2%
Duluth UHF	546	1093	22	-7.4%	-1.9%	-1.5%
Detroit	329	1058	30	-22.1%	-4.5%	-1.8%
South Bend	967	1063	27	-4.3%	-4.1%	-3.6%
Milwaukee	714	1170	26	-6.7%	-3.0%	-0.8%
Rochester	479	652	30	-6.0%	-5.1%	-0.6%
La Crosse	933	1144	28	-8.9%	-7.9%	-4.5%
Flint-Saginaw Bay	354	1475	26	-11.5%	-3.1%	-2.2%
La Crosse	550	1081	22	7.2%	-1.1%	-1.3%
Duluth UHF	451	990	21	-10.0%	-0.7%	-1.0%
Cedar Rapids	663	1788	31	-24.1%	-3.8%	-3.0%
Des Moines U	671	1965	28	-20.9%	-1.7%	-0.6%
Rochester	663	1788	31	-1.5%	-2.7%	-0.3%
Twin Cities	847	1416	30	-16.4%	-2.0%	-1.2%
Overall UHF Average Po	-9.9%	-3.1%	-1.6%			
Des Moines VHF	34.5	1965	18	-1.8%	-0.1%	-0.2%
Duluth VHF	39.5	971	12	-1.6%	-0.4%	-1.0%
Overall HVHF Average P	opulatio	-1.7%	-0.3%	-0.6%		

HAAT Correlation, UHF 1½° Deflection

1½° Deflection Population Loss vs. HAAT

Slots/Bays Correlation, UHF 1½° Deflection

1½° Deflection Population Loss vs. Slot/Bay Count

How Does This Happen?

- Antenna is mechanically tilted by tower deflection
- Elevation pattern is shifted by tilt
- Signal strength along ground changes

Why is Urban Indoor Service Impacted Most?

Typical Elevation Radiation Patterns

HVHF-UHF Elevation Pattern Comparison

Elevation Pattern Slope

Depression Angle Distances

Deflection Impact on HVHF Elevation Pattern

Deflection/Tilt Overview

1° downward eastward

Radiation Deviation (dB)

Horizon = -0.9 east, -0.3 west 13 mi = -0.3 east, -0.8 west9 mi = +0.2 east, -1.3 west

Deflection Impact on UHF Elevation Pattern

Deflection/Tilt Overview

1° downward eastward

Radiation Deviation (dB)

Horizon = -4.8 east, -1.3 west 13 mi = -1.4 east, -3.8 west 9 mi = +0.8 east, -5.7 west

30 slots 30 slots HAAT 1100'

VHF-UHF Deflection Impact Comparison

	-1°	(east)	+1° (west)			
	Defl	ection	Deflection			
Location	<u>VHF</u>	<u>UHF</u>	<u>VHF</u>	<u>UHF</u>		
Horizon	-0.9	-4.8	-0.3	-1.3		
13 miles	-0.3	-1.4	-0.8	-3.8		
9 miles	0.2	0.8	-1.3	-5.7		

HVHF much less impacted by antenna deflection than UHF.

Electronic Impact Takeaways

UHF much more sensitive to deflection than VHF

Greatest VHF impact 8 to 11 degrees depression,
 1-2 miles from tower (@1100')

Greatest UHF impact 1 to 4 degrees depression,
 3 to 11 miles from tower (@1100')

Conclusions

- Tower deflection mainly impacts urban service where indoor antennas are in use
 - Largest antenna radiation variations are closest to the transmitter site
- Service from tallest towers and highest-gain antennas is more vulnerable to deflection impact
- Population distribution has significant impact on results

Recommendations

- Look at your tower from a distance regularly.
 Deflections of ~1° are visible to the human eye.
- Know your tower's sensitivity to wind-caused deflection – refer to structural analysis report
- Have qualified tower rigging crew check tower plumb and guy wire tensions at least annually

Questions?

